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Estimation of the intrinsic heterogeneity of ionic glass-forming melts
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The supercooled ionic melt is considered as a kind of binary composite material with an intrinsic heteroge-
neity (liquid medium and denser packed clusjetependent on temperature. The conductivities of phases are
extracted from the higlliquid) and low(glass temperature experimental data. Effective conductivity of such
a composite has been estimated using the checkerboardlike model with the presence of heterogeneity on
different length scales. Using this model the volume fraction of the denser inclusions from experimental data
on CaK3(NO3)s and Zr-Ba-La-Al-Na-F compound glass formers has been estimated.

PACS numbes): 64.70.Pf, 72.80.Ng, 66.10.Ed

A lot of experimental data on ionic melts have been pub- Repeating this construction a number of times leads to the
lished[1-3] recently. These data are of special interest in thfollowing expression:
supercooled state of the melts. The supercooled melt has
been considered by many recent theofiéf as a sort of
dynamically heterogeneous medium. Whatever the reason In ‘Teff%Ei niIn oy, 2
for the emergence of this heterogeneity, the corresponding
liquid on its nanometric scale can be presented as a COMPO{eren. s the concentration of thith component. For Fig.
ite material with inclusions of greater rigidifyand probably 1 all n; are equal to 1/4. But if some of the, are equal to
of a hlghgr dgnsny [5'6]. W.h'.Ch live much longer than a each other, different values far; follow. The analogous
reorientation time of an individual moleculé]. consideration is valid for triangular lattice and random dis-
. Th's paper IS an attempt to use the expe_nmentgl dgta Ofibution of the spots. For the case of arbitrary random dis-
ionic mel_ts in supercooled_ state for quantitative estimation ofj) ion of domains, the Eq(2) becomes approximate. But
their intrinsic heterogeneity. The results of this estimation.g ont cajculations of resistivity for composites with clusters

3t different shapeg8] have shown that the reasonable devia-
on CaKs3(NOs)s (Refs.[1,2]) and ZBLAN20 (0.53 Zrf pets]

—0.20Bakh—0.04 LaR—0.03 AIF;—0.20NaF, Ref. [3])

glass formers have been shown to be in a good agreement. (a) H_‘_ﬁf{mWW
In 1970 Dykhne[7] has found that the effective conduc- UHJHLLW . o

tivity oo Of infinite 2D checkerboard has the form ‘_, W\M\

N e
Teit= \TwTp, 1) \-.- ﬂm mﬂ%

where o, and o, are the conductivities of the white and
black squares, respectively. The result of ED.is equally
valid for triangular two-dimensional2D) lattice and any
random isotropic distribution of black and white spots of
arbitrary shape until their surface concentrations are equal.

Let us consider the infinite 2D checker board whereby
each “black” and “white” squares of this board are not
uniform. Let the “black” squares be in their turn checker
boards(not infinite) of “green” and “blue” squares(with
conductivitieso; and o, respectively; and let the “white”
squares be checker boar@mt infinite) of “red” and “yel-
low” squares(with conductivitieso3 and o4, respectively.
In this case op~+\o103, oyw=\0304, and og '
~4\/ 01020304. T T T T T 1

This construction is illustrated in Fig(d). Instead of the Ino In(o)
“equal” sign we have used “approximately equal” because eff
of the finite (not infinite) size of “blue-green” and “red- FIG. 1. (@ The schematic illustration of the model used. The
yellow” checker boards. The larger the number of squares ifhite and black squares of the left checker board are not homoge-
these boards, the more accurate the equations are. Suchhébus. They in their turn are also checker bodright pard. (b)
construction physically corresponds to the presence of differSchematic presentation of the probability density of the local con-
ent length scales: medium range order, short range order, etguctivity for validity of Egs.(2) and(3) in 2D case.

v (arbitrary units)
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tions of clusters from the cubic form change the effective
resistivity of the composite insignificantlgno more than 1
400/0) 102 3 A
If the conductivity of the surfacer=o(x,y) depends 3 A,

smoothly on the local coordinates, ), thenv(o)Ao is the ] [ Aa As,

probability of the conductivity at the arbitrary point to be 1 n Aa,

within the interval fromo to o+ Ao It has been shown by ga 10 o . M
Dykhne[7] that the exact expression for the effective con- ¢ 3 °
ductivity is going to be equal to < ] ° .

B Y .
In o-effzf v(o)d(Ino) ) . ..\ —

T —TTT Ty
100 1000

under conditions that the effective conductivity of the infinite
surface is isotropic and the probability densityas a func-
tion of Ino is symmetric. Figure (b) presents schematically
some of the possible cases. Solid bars correspond to the ca:
of two colored square, triangular or random array of spots.

The dashed curves correspond to the cases of som
smooth conductivity distributions. Tortet al.[9] have suc-
cessfully used the rectangular distributisee Fig. 1b), dot- A
ted lined of an active part of conductivity to describe the ©
. . ; <
impedance data on compositérushite”) material.

In this paper we have performed a numerical calculation
of 2D and 3D checker boards. The result of our computation ] (b)
for 2D cases(both square and triangu)ahave been com- ]
pared to the exact 2D solutidit]. Our computational algo- ——rr ——rrrrrr —
rithm gives the conductivityr ., monotonically approaching 100 1000 10000
from below (o¢5<o0ef) to the exact valuéfor N— ). N

The algorithm approximates the system of materially con-
tinuous squaresgor triangles by a square(or correspond-
ingly, triangulay network of conducting wires. Each square
(or triangle is divided intoM? equal cells. The center of
each cell is connected to the centers @¢b#43) of the nearest
neighboring cells by conducting wires. The resistance of th
wire connecting theith and jth cells is equal to ;
+0j)/Acioj, wheres; ando; are the conductivities of the

ith andjth cells, respectivelyM is the number of grid points If one assumes the same kind of dependence to be valid

in the edge of each squafer triangle, a coefficientA=2  for the 3D checker board, one can estimatg from the

for the square lattice and=23 for the triangular one. equation

Translational symmetry of the problem has been taken into

account by choosing the periodical boundary condition for G'w_a'cal(,(N):a’/N'B’, (4)

currents. The symmetry planes of the problem have been

taken into account to reduce the computational time for solvwhere o, is an extrapolated limit of the numerical solution

ing the system oN=2M? linear algebraic equations. for an infinite number of equations. In Fig(R it is evident
This procedure can easily be generalized for the case dhat the reasonable choice @f values allows to present the

the 3D cubic checker board. The only difference now is thadeviationo..— o5 N) this way in the whole range of our

the number of cells in each cube li4%; the number of the calculations(in 3 decades

nearest neighbors is 6, the number of equatiorid4s2M3 Figure 3a) demonstrates these, values(circles for the

and the resistance of the wire between the centers dftthe 3D case in comparison with the exact solution for the 2D

andjth cells isM[ (o + 0)/200;]. The maximal number of ~case(solid curve as a function ofy= o, /oy, It is amazing

N used in our calculation is 13718. to find out how close this 3D calculation is to the 2D case for
Figure 2a) shows the deviations of the numerical resultthe s not close to zero. Nevertheless it might be expected

for the 2D square checker board from the exact solutiorsince a single layer of cubes behaves exactly as a 2D checker

Ao (N)=oes— ocad N) as functions of the number of linear board. Thus, the difference between 2D and 3D appears as a

equationsN for the 3 different ratiosy=o,,/0y,. The linear ~ result of layers’ interconnection only. In the 3D case

form of these curves in log-log plot in 3 decades means thae \ o0y, iS in agreement with the result of R¢fLO].

the deviation might be expressed by the formtla(N) Figure 3a) corresponds to the equationog

=a/NP, =f(y) Vowop, Wheref(y) is a function which expresses the

102 -

10-3 -

FIG. 2. (a) The deviation of the numerical result from the exact
solution for 2D checker board as a function of the number of equa-
tions for different values ofy. (b) The deviation of the numerical
result from the limiting valuer,, for 3D checker board as a function
of the number of equations for different values 1f (a) and (b)
q’riangles correspond to the case pf 0.3, squares-=0.5, and
circles—y=0.7.
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FIG. 3. () The effective conductivity for 30circles and 2D FIG. 4. The calculated volume fraction, of the solid clusters
(solid curvé checker boards as a function 9t o, /oy,. (b) The  in CaK3(NO;)s (squarey and ZBLAN20 (circles glass forming
deviation functionf(y). melts as a function of the temperature. Solid symbols are obtained

from the density data, open symbols correspond to the resistivity
abovementioned deviation between 2D and 3D cases. Belata.

cause of the symmetry relatidi{y)=f(1/y) one needs to
calculate the functiorf(y) only for v from 0 to 1. It was In 0ig(T) =N oe(T)
shown [11] that its asymptotic values arg0)=2, f(1) Nso 1)~ 15 i1 = ogf(T) ®)
=1. Figure 3b) presentsf(y) which is obtained from our q

calculation.

Another way to estimate the,, is to use the density data.
We have used the above consideration to describe thim both liquid and glassy states the density is roughly a linear

conductivity of ionic glass formers in their supercooled statefunction of the temperature. If one assumes the density of

For this casar.; might change up to 20 times. Thus, the both “solidlike” inclusions dg, and “liquidlike” medium
whole range of the variation of the functidify) is not im-

dji; to be equal to the extrapolated values from the low and
portant. That is why one can use the E®) as the first high temperature region respectively, one can estimate the
approximation for the 3D case. Ngo in the following way:
Now let us apply this approach to the experimental data
on CKN [1,2] and ZBLAN20 [3]. Actually there is, prob- d(T)—dje(T)
ably, a whole spectrum of local conductivities in glassifying Nso(T) = W (6)
A . X - sol Ilq(T)
liquid. But let us consider for the sake of simplicity a glass
former in its nanometric scale being a mixture of two com-whered(T) is the experimentally measured density of the
ponents only. The first component is the “liquidlike” one glass former.
with the conductivityo, and the volume fractiom;, . The The result forng,(T) is presented in Fig. 4 as a function
conductivity for this component may be extrapolated from aof temperature. We have used our d@id and data by
high temperature regiofArrhenius[1,12] behavioj of the  Angell [2] on CgK3(NOs)s conductivity and the data by
corresponding glass formef,= (A /T)expE;q/T), where

Hasz[3] on ZBLAN20’s conductivity and density. Unfortu-
T is a temperaturet;, is an activation energy of the liquid nately, while the conductivity which varies in orders can be

state(in K), Ajq is a material dependent constant. The secondneasured with precision, the density which varies in 20%
component consists of the “solidlike” clusters of random only is measured relatively less accurately. The agreement of
form and size with conductivityrg, and volume fraction ngy obtained from conductivity and density data confirms the
Nsoi=1—Nijg, Where o, can be extracted from the glass physical meaningfulness of Eg&) and(6). Let us note the
behavior below T, in an analogous way: g, different character of the two curves corresponding to two
=(As/ T)expEsy/T). HereEg, is the activation energy in different glass forming abilities of the CKN and ZBLANZ20.
the glassy statéusually 2—4 times higher thaif). The dc conductivity of the glassy state B& T, is ex-
Therefore, one can extract from the experimental data thtremely small. Thus the “solidlike” inclusion in liquid me-

temperature dependence of the volume fraction of the solidium behaves as a capacitor. At high frequencies this capaci-
componening, using the equatiori2) and the extrapolated tance might

become dominant in ac conductivity
values ofo, and oy : measurementr(w): o(w)=(w)"so. This effect corresponds
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to the well known “universal conductivity response&Ref.

[13]) which was found to be universal for the strongly dis-

ordered system@lasses, etf. o(w)=oy[1+(w7)*]. Here
w is a frequency,r is an effective relaxation times is a
characteristic exponent,<0s<1. For high frequency13]
or/and low temperaturs is approaching to 1. For the low
frequency[13] or/and high temperaturis always less than
1.

Thus our “compositelike” picture is consistent with the
“universal conductivity response” and gives the expongnt
the sense of the volume fraction of the solid comporieat
pecially for low temperature limit The lower the tempera-
ture, the closer the indexis to 1 because the volume frac-
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frequency, the closer the indexis to 1 because the imagi-
nary part of theog, becomes dominant. For high tempera-
ture and/or low frequency, our model predicts tlsavan-
ishes. However, for high temperature limit, the small clusters
with intermediate conductivity probably become important.
That is why for the description of the ac conductivity behav-
ior at high temperature, one needs to take into account the
possible distribution of local conductivities.

This work was supported by The Aaron Gutwirth Foun-
dation, Allied Investments Ltd(Israe). The authors are
grateful to Dr. W. C. Hasz for his kind readiness to provide
us with the experimental data on ZBLAN20 melt and to Dr.

tion of the solid component increases. The higher the.. Fel for the useful discussion.
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