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Estimation of the intrinsic heterogeneity of ionic glass-forming melts
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Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978, Israel

~Received 7 July 1999!

The supercooled ionic melt is considered as a kind of binary composite material with an intrinsic heteroge-
neity ~liquid medium and denser packed clusters! dependent on temperature. The conductivities of phases are
extracted from the high~liquid! and low~glass! temperature experimental data. Effective conductivity of such
a composite has been estimated using the checkerboardlike model with the presence of heterogeneity on
different length scales. Using this model the volume fraction of the denser inclusions from experimental data
on Ca2K3(NO3)5 and Zr-Ba-La-Al-Na-F compound glass formers has been estimated.

PACS number~s!: 64.70.Pf, 72.80.Ng, 66.10.Ed
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A lot of experimental data on ionic melts have been pu
lished@1–3# recently. These data are of special interest in
supercooled state of the melts. The supercooled melt
been considered by many recent theories@4# as a sort of
dynamically heterogeneous medium. Whatever the rea
for the emergence of this heterogeneity, the correspond
liquid on its nanometric scale can be presented as a com
ite material with inclusions of greater rigidity~and probably
of a higher density! @5,6# which live much longer than a
reorientation time of an individual molecule@6#.

This paper is an attempt to use the experimental data
ionic melts in supercooled state for quantitative estimation
their intrinsic heterogeneity. The results of this estimat
from independent conductivity and density experimental d
on Ca2K3(NO3)5 ~Refs. @1,2#! and ZBLAN20 (0.53 ZrF4
20.20 BaF220.04 LaF320.03 AlF320.20 NaF, Ref. @3#!
glass formers have been shown to be in a good agreem

In 1970 Dykhne@7# has found that the effective condu
tivity seff of infinite 2D checkerboard has the form

seff5Aswsb, ~1!

where sw and sb are the conductivities of the white an
black squares, respectively. The result of Eq.~1! is equally
valid for triangular two-dimensional~2D! lattice and any
random isotropic distribution of black and white spots
arbitrary shape until their surface concentrations are equ

Let us consider the infinite 2D checker board where
each ‘‘black’’ and ‘‘white’’ squares of this board are no
uniform. Let the ‘‘black’’ squares be in their turn check
boards~not infinite! of ‘‘green’’ and ‘‘blue’’ squares~with
conductivitiess1 ands2, respectively!; and let the ‘‘white’’
squares be checker boards~not infinite! of ‘‘red’’ and ‘‘yel-
low’’ squares~with conductivitiess3 ands4, respectively!.
In this case sb'As1s2, sw'As3s4, and seff

'A4 s1s2s3s4.
This construction is illustrated in Fig. 1~a!. Instead of the

‘‘equal’’ sign we have used ‘‘approximately equal’’ becau
of the finite ~not infinite! size of ‘‘blue-green’’ and ‘‘red-
yellow’’ checker boards. The larger the number of square
these boards, the more accurate the equations are. Su
construction physically corresponds to the presence of dif
ent length scales: medium range order, short range order
PRE 611063-651X/2000/61~2!/2121~4!/$15.00
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Repeating this construction a number of times leads to
following expression:

ln seff'(
i

ni ln s i , ~2!

whereni is the concentration of thei th component. For Fig.
1 all ni are equal to 1/4. But if some of thes i are equal to
each other, different values forni follow. The analogous
consideration is valid for triangular lattice and random d
tribution of the spots. For the case of arbitrary random d
tribution of domains, the Eq.~2! becomes approximate. Bu
recent calculations of resistivity for composites with cluste
of different shapes@8# have shown that the reasonable dev

FIG. 1. ~a! The schematic illustration of the model used. T
white and black squares of the left checker board are not hom
neous. They in their turn are also checker boards~right part!. ~b!
Schematic presentation of the probability density of the local c
ductivity for validity of Eqs.~2! and ~3! in 2D case.
2121 ©2000 The American Physical Society
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tions of clusters from the cubic form change the effect
resistivity of the composite insignificantly~no more than
40%!.

If the conductivity of the surfaces5s(x,y) depends
smoothly on the local coordinates (x,y), thenn(s)Ds is the
probability of the conductivity at the arbitrary point to b
within the interval froms to s1Ds. It has been shown by
Dykhne @7# that the exact expression for the effective co
ductivity is going to be equal to

ln seff5E n~s!d~ ln s! ~3!

under conditions that the effective conductivity of the infin
surface is isotropic and the probability densityn as a func-
tion of lns is symmetric. Figure 1~b! presents schematicall
some of the possible cases. Solid bars correspond to the
of two colored square, triangular or random array of spo

The dashed curves correspond to the cases of s
smooth conductivity distributions. Tortetet al. @9# have suc-
cessfully used the rectangular distribution@see Fig. 1~b!, dot-
ted lines# of an active part of conductivity to describe th
impedance data on composite~‘‘brushite’’ ! material.

In this paper we have performed a numerical calculat
of 2D and 3D checker boards. The result of our computat
for 2D cases~both square and triangular! have been com-
pared to the exact 2D solution@7#. Our computational algo-
rithm gives the conductivityscalc monotonically approaching
from below (scalc,seff) to the exact value~for N→`).

The algorithm approximates the system of materially c
tinuous squares~or triangles! by a square~or correspond-
ingly, triangular! network of conducting wires. Each squa
~or triangle! is divided into M2 equal cells. The center o
each cell is connected to the centers of 4~or 3! of the nearest
neighboring cells by conducting wires. The resistance of
wire connecting thei th and j th cells is equal to (s i
1s j )/As is j , wheres i ands j are the conductivities of the
i th andj th cells, respectively,M is the number of grid points
in the edge of each square~or triangle!, a coefficientA52
for the square lattice andA52A3 for the triangular one.
Translational symmetry of the problem has been taken
account by choosing the periodical boundary condition
currents. The symmetry planes of the problem have b
taken into account to reduce the computational time for so
ing the system ofN52M2 linear algebraic equations.

This procedure can easily be generalized for the cas
the 3D cubic checker board. The only difference now is t
the number of cells in each cube isM3; the number of the
nearest neighbors is 6, the number of equations isN52M3

and the resistance of the wire between the centers of thei th
and j th cells isM @(s i1s j )/2s is j #. The maximal number of
N used in our calculation is 13 718.

Figure 2~a! shows the deviations of the numerical res
for the 2D square checker board from the exact solut
Ds(N)5seff2scalc(N) as functions of the number of linea
equationsN for the 3 different ratiosg5sw /sb . The linear
form of these curves in log-log plot in 3 decades means
the deviation might be expressed by the formulaDs(N)
5a/Nb.
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If one assumes the same kind of dependence to be v
for the 3D checker board, one can estimates` from the
equation

s`2scalc~N!5a8/Nb8, ~4!

wheres` is an extrapolated limit of the numerical solutio
for an infinite number of equations. In Fig. 2~b! it is evident
that the reasonable choice ofs` values allows to present th
deviations`2scalc(N) this way in the whole range of ou
calculations~in 3 decades!.

Figure 3~a! demonstrates theses` values~circles! for the
3D case in comparison with the exact solution for the
case~solid curve! as a function ofg5sw /sb . It is amazing
to find out how close this 3D calculation is to the 2D case
the s not close to zero. Nevertheless it might be expec
since a single layer of cubes behaves exactly as a 2D che
board. Thus, the difference between 2D and 3D appears
result of layers’ interconnection only. In the 3D cases`

>Aswsb is in agreement with the result of Ref.@10#.
Figure 3~a! corresponds to the equationseff

5 f (g)Aswsb, wheref (g) is a function which expresses th

FIG. 2. ~a! The deviation of the numerical result from the exa
solution for 2D checker board as a function of the number of eq
tions for different values ofg. ~b! The deviation of the numerica
result from the limiting values` for 3D checker board as a functio
of the number of equations for different values ofg. ~a! and ~b!
Triangles correspond to the case ofg50.3, squares–g50.5, and
circles–g50.7.
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abovementioned deviation between 2D and 3D cases.
cause of the symmetry relationf (g)5 f (1/g) one needs to
calculate the functionf (g) only for g from 0 to 1. It was
shown @11# that its asymptotic values aref (0)52, f (1)
51. Figure 3~b! presentsf (g) which is obtained from our
calculation.

We have used the above consideration to describe
conductivity of ionic glass formers in their supercooled sta
For this caseseff might change up to 1014 times. Thus, the
whole range of the variation of the functionf (g) is not im-
portant. That is why one can use the Eq.~2! as the first
approximation for the 3D case.

Now let us apply this approach to the experimental d
on CKN @1,2# and ZBLAN20 @3#. Actually there is, prob-
ably, a whole spectrum of local conductivities in glassifyi
liquid. But let us consider for the sake of simplicity a gla
former in its nanometric scale being a mixture of two co
ponents only. The first component is the ‘‘liquidlike’’ on
with the conductivitys liq and the volume fractionnliq . The
conductivity for this component may be extrapolated from
high temperature region~Arrhenius @1,12# behavior! of the
corresponding glass formers liq5(Aliq /T)exp(Eliq /T), where
T is a temperature,Eliq is an activation energy of the liquid
state~in K!, Aliq is a material dependent constant. The seco
component consists of the ‘‘solidlike’’ clusters of rando
form and size with conductivityssol and volume fraction
nsol512nliq , where ssol can be extracted from the glas
behavior below Tg in an analogous way: ssol
5(Asol/T)exp(Esol/T). HereEsol is the activation energy in
the glassy state~usually 2–4 times higher thanEliq).

Therefore, one can extract from the experimental data
temperature dependence of the volume fraction of the s
componentnsol using the equation~2! and the extrapolated
values ofssol ands liq :

FIG. 3. ~a! The effective conductivity for 3D~circles! and 2D
~solid curve! checker boards as a function ofg5sw /sb . ~b! The
deviation functionf (g).
e-

he
.

a

-

a

d

e
id

nsol~T!'
ln s liq~T!2 ln seff~T!

ln s liq~T!2 ln ssol~T!
. ~5!

Another way to estimate thensol is to use the density data
In both liquid and glassy states the density is roughly a lin
function of the temperature. If one assumes the density
both ‘‘solidlike’’ inclusions dsol and ‘‘liquidlike’’ medium
dliq to be equal to the extrapolated values from the low a
high temperature region respectively, one can estimate
nsol in the following way:

nsol~T!5
d~T!2dliq~T!

dsol~T!2dliq~T!
, ~6!

where d(T) is the experimentally measured density of t
glass former.

The result fornsol(T) is presented in Fig. 4 as a functio
of temperature. We have used our data@1# and data by
Angell @2# on Ca2K3(NO3)5 conductivity and the data by
Hasz@3# on ZBLAN20’s conductivity and density. Unfortu
nately, while the conductivity which varies in orders can
measured with precision, the density which varies in 20
only is measured relatively less accurately. The agreemen
nsol obtained from conductivity and density data confirms t
physical meaningfulness of Eqs.~5! and~6!. Let us note the
different character of the two curves corresponding to t
different glass forming abilities of the CKN and ZBLAN20

The dc conductivity of the glassy state atT,Tg is ex-
tremely small. Thus the ‘‘solidlike’’ inclusion in liquid me-
dium behaves as a capacitor. At high frequencies this cap
tance might become dominant in ac conductiv
measurements(v): s(v)}(v)nsol. This effect corresponds

FIG. 4. The calculated volume fractionnsol of the solid clusters
in Ca2K3(NO3)5 ~squares! and ZBLAN20 ~circles! glass forming
melts as a function of the temperature. Solid symbols are obta
from the density data, open symbols correspond to the resist
data.
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to the well known ‘‘universal conductivity response’’~Ref.
@13#! which was found to be universal for the strongly d
ordered systems~glasses, etc.!: s(v)5s0@11(vt)s#. Here
v is a frequency,t is an effective relaxation time,s is a
characteristic exponent, 0,s,1. For high frequency@13#
or/and low temperatures is approaching to 1. For the low
frequency@13# or/and high temperatures is always less than
1.

Thus our ‘‘compositelike’’ picture is consistent with th
‘‘universal conductivity response’’ and gives the exponens
the sense of the volume fraction of the solid component~es-
pecially for low temperature limit!. The lower the tempera
ture, the closer the indexs is to 1 because the volume frac
tion of the solid component increases. The higher
st

.C

,

m

tt
st
e

frequency, the closer the indexs is to 1 because the imagi
nary part of thessol becomes dominant. For high temper
ture and/or low frequency, our model predicts thats van-
ishes. However, for high temperature limit, the small clust
with intermediate conductivity probably become importa
That is why for the description of the ac conductivity beha
ior at high temperature, one needs to take into account
possible distribution of local conductivities.
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